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Because the ions in a perfect crystal are arranged in a regular periodic array, we are
led to consider the problem of an electron in a potential U(r) with the periodicity of
the underlying Bravais lattice; ie.,

Ulr + R) = Ulr) (8.1)
for all Bravais lattice vectors R.

Since the scale of periodicity of the potential U (~ 10~ 8 cm) is the size of a typical
de Broglie wavelength of an electron in the Sommerfeld free electron model, it is
essential to use quantum mechanics in accounting for the effect of periodicity on
electronic motion. In this chapter we shall discuss those properties of the electronic
levels that depend only on the periodicity of the potential, without regard to its
particular form. The discussion will be continued in Chapters 9 and 10 in two limiting
cases of great physical interest that provide more concrete illustrations of the general
results of this chapter. In Chapter 11 some of the more important methods for the
detailed calculation of electronic levels are summarized. In Chapters 12 and 13 we
shall discuss the bearing of these results on the problems of electronic transport
theory first raised in Chapters 1 and 2, indicating how many of the anomalies of
free electron theory (Chapter 3) are thereby removed. In Chapters 14 and 15 we shall
examine the properties of specific metals that illustrate and confirm the general theory.

We emphasize at the outset that perfect periodicity is an idealization. Real solids
are never absolutely pure, and in the neighborhood of the impurity atoms the solid
is not the same as elsewhere in the crystal. Furthermore, there is always a slight
temperature-dependent probability of finding missing or misplaced ions (Chapter 30)
that destroy the perfect translational symmetry of even an absolutely pure crystal.
Finally, the ions are not in fact stationary, but continually undergo thermal vibra-
tions about their equilibrium positions.

These imperfections are all of great importance. They are, for example, ultimately
responsible for the fact that the electrical conductivity of metals is not infinite.
Progress is best made, however, by artificially dividing the problem into two parts:
(a) the ideal fictitious perfect crystal, in which the potential is genuinely periodic, and
(b) the effects on the properties of a hypothetical perfect crystal of all deviations from
perfect periodicity, treated as small perturbations.

We also emphasize that the problem of electrons in a periodic potential does not
arise only in the context of metals. Most of our general conclusions apply to all
crystalline solids, and will play an important role in our subsequent discussions of
insulators and semiconductors.

THE PERIODIC POTENTIAL

The problem of electrons in a solid is in principle a many-electron problem, for the
full Hamiltonian of the solid contains not only the one-electron potentials describing
the interactions of the electrons with the massive atomic nuclei, but also pair potentials
describing the electron-electron interactions. In the independent electron approxi-
mation these interactions are represented by an effective one-electron potential U(r).
The problem of how best to choose this effective potential is a complicated one,
which we shall return to in Chapters 11 and 17. Here we merely observe that whatever
detailed form the one-clectron effective potential may have, if the crystal is perfectly
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periodic it must satisfy (8.1). From this fact alone many important conclusions can
already be drawn.

Qualitatively, however, a typical crystalline potential might be expected to have
the form shown in Figure 8.1, resembling the individual atomic potentials as the ion
is approached closely and flattening off in the region between ions.

3 - - Figure 8.1

S 4UM A typical crystalline periodic
potential, plotted along a line
y of ions and along a line mid-
\ way between a plane of ions.
Q (Closed circles are the equi-
: librium ion sites; the solid
curves give the potential
along the line of ions; the
dotted curves give the poten-
tial along a line between
planes of ions; the dashed
curves give the potential of

single isolated ions.)

We are thus led to examine general properties of the Schrédinger equation for a
single electron,

2
Hy = (—% V2 4+ U(r)) ¥ = &Y, 8.2)

that follow from the fact that the potential U has the periodicity (8.1). The free electron
Schradinger equation (2.4) is a special case of (8.2) (although, as we shall see, in some
respects a very pathological one), zero potential being the simplest example of a
periodic one.

Independent electrons, each of which obeys a one electron Schrodinger equation
with a periodic potential, are known as Bloch electrons (in contrast to “free electrons,”
to which Bloch electrons reduce when the periodic potential is identically zero). The
stationary states of Bloch electrons have the following very important property as
a general consequence of the periodicity of the potential U:

BLOCH’S THEOREM

Theorem.' The eigenstates i of the one-electron Hamiltonian H = —h2V2/2m +
U(r), where U(r + R) = U(r) for all R in a Bravais lattice, can be chosen to have the
form of a plane wave times a function with the periodicity of the Bravais lattice:

Ynl®) = €* ), (8.3)

! The theorem was first proved by Floquet in the one-dimensional case, where it is [requently called
Floguer's theorem.
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where

"ﬂk{r + R) = unk(r} (8'4)
for all R in the Bravais lattice.?
Note that Eqs. (8.3) and (8.4) imply that

’Illfr:l{r + R) = em.nlﬁnk(r)' (8‘5)

Bloch’s theorem is sometimes stated in this alternative form:* the eigenstates of H
can be chosen so that associated with each  is a wave vector k such that

y(r + R) = * *y(r), | (8.6)

for every R in the Bravais lattice.
We offer two proofs of Bloch’s theorem, one from general quantum-mechanical
considerations and one by explicit construction.*

FIRST PROOF OF BLOCH’S THEOREM

For each Bravais lattice vector R we define a translation operator T, which, when
operating on any function f(r), shifts the argument by R: '

Lf@®) =f(r + R). 3.7
Since the Hamiltonian is periodic, we have
TeHY = Hr + Ry(r + R) = Hio)y(r + R) = HTy. (8.8)
Because (8.8) holds identically for any function i, we have the operator identity
TeH = HT. 8.9

In addition, the result of applying two successive translations does not depend on
the order in which they are applied, since for any (r)

ThTxy(r) = Te () = ¥(r + R + R’). (8.10)
Therefore
LTy = TeTy = Trig- (8.11)

Equations (8.9) and (8.11) assert that the T, for all Bravais lattice vectors R and
the Hamiltonian H form a set of commuting operators. It follows from a fundamental
theorem of quantum mechanics® that the eigenstates of H can therefore be chosen
to be simultaneous eigenstates of all the Tg:

Hy = &y,
Ty = c(R). (8.12)

! The index n 15 known as the band index and occurs because for a given k, as we shall see, there
will be many independent eigenstates.

3 Equation (8.6) implies (8.3) and (8.4), since it requires the function u(r) = exp (—ik - r) /(r) to have
the pericdicity of the Bravais lattice.

4 The first proof relies on some formal results of quantum mechanics. The second is more elementary,
but also notationally more cumbersome.

5 See, for example, D. Park, Introduction to the Quantum Theory, McGraw-Hill, New York, 1964,
p. 123,
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The eigenvalues c(R) of the translation operators are related because of the condition
(8.11), for on the one hand
T k¥ = c(R) Ty = d(R)(R)Y, (8.13)
while, according to (8.11),
TeTol = Trx¥ = ¢R + R)Y. 8.14)
It follows that the eigenvalues must satisfy
c(R + R') = c(R)c(R").

Now let a, be three primitive vectors for the Bravais lattice. We can always write
the c(a;) in the form

(8.15)

cla)) = e?™*i (8.16)

by a suitable choice® of the x; It then follows by successive applications of (8.15)
that if R is a general Bravais lattice vector given by

R = ma; + n;a; + ma;, (8.17)
then
¢(R) = c(a;)1c(az) 2c(as)™. (8.18)
But this is precisely equivalent to
¢(R) = e*'¥, (8.19)
where
k = x;b; + x;b; + x3bs (8.20)

and the b; are the reciprocal lattice vectors satisfying Eq. (5.4): b; - a; = 2ndy;.
Summarizing, we have shown that we can choose the eigenstates i of H so that
for every Bravais lattice vector R,

Ty = Yir + R) = (R} = ™ *(x). (8.21)
This is precisely Bloch's theorem, in the form (8.6).

THE BORN-VON KARMAN BOUNDARY CONDITION

By imposing an appropriate boundary condition on the wave functions we can
demonstrate that the wave vector k must be real, and arrive at a condition restricting
the allowed values of k. The condition generally chosen is the natural generalization
of the condition (2.5) used in the Sommerfeld theory of free electrons in a cubical
box. As in that case, we introduce the volume containing the electrons into the theory
through a Born-von Karman boundary condition of macroscopic periodicity (page
33). Unless, however, the Bravais lattice is cubic and L is an integral multiple of
the lattice constant g, it is not convenient to continue to work in a cubical volume
of side L. Instead, it is more convenient to work in a volume commensurate with a

©  We shall see that for suitable boundary conditions the x, must be real, but for now they can be
regarded as general complex numbers.



136 Chapter 8 Electron Levels in a Periodic Potential

primitive cell of the underlying Bravais lattice. We therefore generalize the periodic
boundary condition (2.5) to

Y@ + Na) =y@), i=123 (8.22)

where the a, are three primitive vectors and the N; are all integers of order N3,
where N = N,N,Nj is the total number of primitive cells in the crystal.

As in Chapter 2, we adopt this boundary condition under the assumption that
the bulk properties of the solid will not depend on the choice of boundary condition,
which can therefore be dictated by analytical convenience.

Applying Bloch’s theorem (8.6) to the boundary condition (8.22) we find that

Yulr + Na) = M0, =123, (8.23)
which requires that
eNE = 1 i=1,273. (8.24)
When k has the form (8.20), Eq. (8.24) requires that
gz"i”i’i = l’ (8.25)
and consequently we must have
x = ﬂ, m; integral. (8.26)
N;
Therefore the general form for allowed Bloch wave vectors is’
3
k=) —ﬁi b;,  m;integral (8.27)

i=1 i

It follows from (8.27) that the volume Ak of k-space per allowed value of k is just
the volume of the little parallelepiped with edges b;/N;:

by (b b3\ _ 1
Ak = N, (Nz x N;) = Nb' (b, x bs). (8.28)

Since by - (b, X by) is the volume of a reciprocal lattice primitive cell, Eq. (8.28)
asserts that the number of allowed wave vectors in a primitive cell of the reciprocal
lattice is equal to the number of sites in the crystal.

The volume of a reciprocal lattice primitive cell is (27)3/v, where v = V/N is the
volume of a direct lattice primitive cell, so Eq. (8.28) can be written in the alternative

form:
r;: (211/)" ‘

v

This is precisely the result (2.18) we found in the free electron case.

(829)

7 Note that (8.27) reduces to the form (2.16) used in free electron theory when the Bravais lattice is
simple cubic, the ; are the cubic primitive vectors, and Ny = N; = N; = Lja.
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SECOND PROOF OF BLOCH’S THEOREM?®

This second proof of Bloch’s theorem illuminates its significance from a rather dif-
ferent point of view, which we shall exploit further in Chapter 9. We start with the
observation that one can always expand any function obeying the Born-von Karman
boundary condition (8.22) in the set of all plane waves that satisfy the boundary
condition and therefore have wave vectors of the form (8.27):°

W) = X e (8.30)

q s : .
Because the potential U(r) is periodic in the lattice, its plane wave expansion will
only contain plane waves with the periodicity of the lattice and therefore with wave
vectors that are vectors of the reciprocal lattice:1°

U =Y Uge™ ™. (8.31)
K
The Fourier coefficients Uy are related to U(r) by'!

1

Uy = —J‘ dr e”® T U(r). (8.32)
U Jen

Since we are at liberty to change the potential energy by an additive constant, we

fix this constant by requiring that the spatial average U, of the potential over a

primitive cell vanish:

Uy =1I dr U(r) = 0. (8.33)
U Jeent

Note that because the potential U(r) is real, it follows from (8.32) that the Fourier
coefficients satisfy
U = Ug* (8.34)

If we assume that the crystal has inversion symmetry'? so that, for a suitable choice
of origin, U(r) = U(—r), then (8.32) implies that U, is real, and thus
U = Uy = Ug* (for crystals with inversion symmetry). (8.35)

We now place the expansions (8.30) and (8.31) into the Schrédinger equation (8.2).
The kinetic energy term gives
hz h 2

Lz —_ g2 - i J ig-r
me_ szlfl—z‘:zchqe ’ (8:36)

& Although more elementary than the first proof, the second is also notationally more complicated,
and of importance primarily as a starting point for the approximate calculations of Chapter 9. The reader
may therefore wish to skip it at this point.

¢ We shall subsequently understand unspecified summations over k to be over all wave vectors of the
form (8.27) allowed by the Born—von Karman boundary condition.

1% A sum indexed by K shall always be understood to run over all reciprocal lattice vectors.

' See Appendix D, where the relevance of the reciprocal lattice to Fourier expansions of periodic
functions is discussed.

12 The reader is invited to pursue the argument of this section (and Chapter 9) without the assumption
of inversion symmetry, which is made solely to avoid inessential complications in the notation.
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The term in the potential energy can be written'?

o= (g (3)
=Y Uc@™ 9" = ¥ Upcy g2, (837)

We change the names of the summation indices in (8.37) —from K and q’, to K’
and g—so that the Schrédinger equation becomes

. h?
Z e’ {(ﬂ qz e 8) Cq + Z UK'cq—lﬁ’} = 0. (8.38)
q K

Since the plane waves satisfying the Born—von Karman boundary condition are
an orthogonal set, the coefficient of each separate term in (8.38) must vanish,'* and
therefore for all allowed wave vectors g,

—
h? !
(ﬂ q* — a) cg + )“: Upcy x=0. (8.39)

|

It is convenient to write q in the form ¢ = k — K, where K is a reciprocal lattice
vector chosen so that k lies in the first Brillouin zone. Equation (8.39) becomes

h?
(2_ &k — K)* - 8) Cx t z U x-x =0, (8.40)
m -

or, if we make the change of variables K' -+ K’ — K,

h?
(ﬂ (k — K)? — 8) Cx + ; U gCppee = 0. ‘ (8.41)

We emphasize that Egs. (8.39) and (8.41) are nothing but restatements of the
original Schrodinger equation (8.2) in momentum space, simplified by the fact that
because of the periodicity of the potential, U, is nonvanishing only when k is a vector
of the reciprocal lattice.

For fixed k in the first Brillouin zone, the set of equations (8.41) for all reciprocal
lattice vectors K couples only those coefficients ¢, ¢y _x, Cx_x» Co_x- - - - Whose wave
vectors differ from k by a reciprocal lattice vector. Thus the original problem has
separated into N independent problems: one for each allowed value of k in the first
Brillouin zone. Each such problem has solutions that are superpositions of plane
waves containing only the wave vector k and wave vectors differing from k by a
reciprocal lattice vector.

13 The last step follows from making the substitution K + q = g, and noting that because K is a
reciprocal lattice vector, summing over all q of the form (8.27) is the same as summing over all q' of that
form.

% This can also be deduced from Eq. (D.12), Appendix D, by multiplying (8.38) by the appropriate
plane wave and integrating over the volume of the crystal.
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Putting this information back into the expansion (8.30) of the wave function ,
we see that if the wave vector q only assumes the values k, k — K, k — K" ...,
then the wave function will be of the form

tg= 3oy ST, (8.42)
If we write this as )
Un(r) = e“"(%c,__xe““"], (8.43)
then this is of the Bloch form (8.3) with the periodic function u(r) given by*?
u(r) = EK: O e, (8.44)

GENERAL REMARKS ABOUT BLOCH’S THEOREM

1. Bloch’s theorem introduces a wave vector k, which turns out to play the same
fundamental role in the general problem of motion in a periodic potential that the
free electron wave vector k plays in the Sommerfeld theory. Note, however, that
although the free electron wave vector is simply p/#, where p is the momentum of the
electron, in the Bloch case k is not proportional to the electronic momentum. This
is clear on general grounds, since the Hamiltonian does not have complete trans-
lational invariance in the presence of a nonconstant potential, and therefore its
eigenstates will not be simultaneous eigenstates of the momentum operator. This
conclusion is confirmed by the fact that the momentum operator, p = (/i) V, when
acting on \,, gives

A LG 0)

h
= ik, + e"‘""; V u,(r), (8.45)

which is not, in general, just a constant times i,y ; 1.€., Y, is not a momentum eigen-
state. )

Nevertheless, in many ways /ik is a natural extension of p to the case of a periodic
potential. It is known as the crystal momentum of the electron, to emphasize this
similarity, but one should not be misled by the name into thinking that /k is a mo-
mentum, for it is not. An intuitive understanding of the dynamical significance of
the wave vector k can only be acquired when one considers the response of Bloch
electrons to externally applied electromagnetic fields (Chapter 12). Only then does
its full resemblance to p/h emerge. For the present, the reader should view k as a
quantum number characteristic of the translational symmetry of a periodic potential,
just as the momentum p is a quantum number characteristic of the fuller translational
symmetry of free space.

2. The wave vector k appearing in Bloch’s theorem can always be confined to
the first Brillouin zone (or to any other convenient primitive cell of the reciprocal

15 Note that there will be (infinitely) many solutions to the (infinite) set of equations (8.41) for a given
k. These are classified by the band index n (see footnote 2).
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lattice). This is because any K’ not in the first Brillouin zone can be written as
kk=k+K (8.46)

where K is a reciprocal lattice vector and k does lie in the first zone. Since ¢* 'R = 1
for any reciprocal lattice vector, if the Bloch form (8.6) holds for k', it will also hold
for k.
3. The index n appears in Bloch’s theorem because for given k there are many
solutions to the Schrodinger equation. We noted this in the second proof of Bloch’s
theorem, but it can also be seen from the following argument:
Let us look for all solutions to the Schrédinger equation (8.2) that have the Bloch
form
W(r) = € "ufr), (8.47)

where k is fixed and u has the periodicity of the Bravais lattice. Substituting this into
the Schrodinger equation, we find that u is determined by the eigenvalue problem

2 2
Hulr) = (ﬁ% (} Y ¥ k) + U(T)) 1(r) (8.48)

= §,1,(r)

with boundary condition
) = w4 + R). (8.49)

Because of the periodic boundary condition we can regard (8.48) as a Hermitian
eigenvalue problem restricted to a single primitive cell of the crystal. Because the
eigenvalue problem is set in a fixed finite volume, we expect on general grounds to
find an infinite family of solutions with discretely spaced eigenvalues,'® which we
label with the band index n.

Note that in terms of the eigenvalue problem specified by (8.48) and (8.49), the
wave vector k appears only as a parameter in the Hamiltonian H,. We therefore
expect each of the energy levels, for given k, to vary continuously as k varies.'” In
this way we arrive at a description of the levels of an electron in a periodic potential
in terms of a family of continuous'® functions &,(Kk).

4. Although the full set of levels can be described with k restricted to a single
primitive cell, it is often useful to allow k to range through all of k-space, even though
this gives a highly redundant description. Because the set of all wave functions and
energy levels for two values of k differing by a reciprocal lattice vector must be

16 Just as the problem of a free electron in 2 box of fixed finite dimensions has a set of discrete
energy levels, the vibrational normal modes of a finite drumhead have a set of discrete frequencies, etc.

17 This expectation is implicit, for example, in ordinary perturbation theory, which is possible only
because small changes in parameters in the Hamiltonian lead to small changes in the energy levels. In
Appendix E the changes in the energy levels for small changes in k are calculated explicitly.

18 The fact that the Born-von Karman boundary condition restricts k to discrete values of the
form (R.27) has no bearing on the continuity of &,(k) as a function of a continuous variable k, for the
eigenvalue problem given by (8.48) and (8.49) makes no reference to the size of the whole crystal and is
well defined for any k. One should also note that the set of k of the form (8.27) becomes dense in k-space
in the limit of an infinite crystal.
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identical, we can assign the indices n to the levels in such a way that for given n, the
eigenstates and eigenvalues are periodic functions of k in the reciprocal lattice:

"bn.l+l({r) = 'pnk{r},

Sn.ls-rl( = gnk'

(8.50)

This leads to a description of the energy levels of an electron in a periodic potential
in terms of a family of continuous functions &, (or &,(k)), each with the periodicity
of the reciprocal lattice. The information contained in these functions is referred to
as the band structure of the solid.

For each n, the set of electronic levels specified by &,(k) is called an energy band.
The origin of the term “band” will emerge in Chapter 10. Here we only note that
because each &,(k) is periodic in k and continuous, it has an upper and lower bound,
so that all the levels &,(k) lie in the band of energies lying between these limits.

5. It can be shown quite generally (Appendix E) that an electron in a level specified
by band index n and wave vector k has a nonvanishing mean velocity, given by

1
v,(k) = 7 Vi &4(k). __ (8.51)

J

This is a most remarkable fact. It asserts that there are stationary (i.e., time-
independent) levels for an electron in a periodic potential in which, in spite of the
interaction of the electron with the fixed lattice of ions, it moves forever without
any degradation of its mean velocity. This is in striking contrast to the idea of Drude
that collisions were simply encounters between the electron and a static ion. [ts
implications are of fundamental importance, and will be explored in Chapters 12
and 13.

THE FERMI SURFACE

The ground state of N free electrons!? is constructed by occupying all one-electron
levels k with energies &(k) = h2k?/2m less than &g, where & is determined by requiring
the total number of one-electron levels with energies less than & to be equal to the
total number of electrons (Chapter 2).

The ground state of N Bloch electrons is similarly constructed, except that the
one-electron levels are now labeled by the quantum numbers n and k, &,(k) does not
have the simple explicit free electron form, and k must be confined to a single primitive
cell of the reciprocal lattice if each level is to be counted only once. When the lowest
of these levels are filled by a specified number of electrons, two quite distinct types
of configuration can result:

19 We shall not distinguish notationally between the number of conduction electrons and the number
of primitive cells when it is clear from the context which is meant; they are equal, however, only in a
monovalent monatomic Bravais lattice(e.g, the alkali metals).
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1. A certain number of bands may be completely filled, all others remaining empty.
The difference in energy between the highest occupied level and the lowest un-
occupied level (ie., between the “top™ of the highest occupied band and the
“bottom™ of the lowest empty band) is known as the band gap. We shall find that
solids with a band gap greatly in excess of kg7 (T near room temperature) are
insulators (Chapter 12). If the band gap is comparable to kT, the solid is known
as an intrinsic semiconductor (Chapter 28). Because the number of levels in a
band is equal to the number of primitive cells in the crystal (page 136) and because
each level can accommodate two electrons (one of each spin), a configuration
with a band gap can arise (though it need not) only if the number of electrons per
primitive cell is even.

2. A number of bands may be partially filled. When this occurs, the energy of the
highest occupied level, the Fermi energy &, lies within the energy range of one
or more bands. For each partially filled band there will be a surface in k-space
separating the occupied from the unoccupied levels. The set of all such surfaces
is known as the Fermi surface, and is the generalization to Bloch electrons of the
free electron Fermi sphere. The parts of the Fermi surface arising from individual
partially filled bands are known as branches of the Fermi surface.*® We shall
see (Chapter 12) that a solid has metallic properties provided that a Fermi
surface exists.

Analytically, the branch of the Fermi surface in the nth band is that surface in
k-space (if there is one) determined by?*

Sn{k) = SF' (8.52)

Thus the Fermi surface is a constant energy surface (or set of constant energy surfaces)
in k-space, just as the more familiar equipotentials of electrostatic theory are constant
energy surfaces in real space.

Since the &,(k) are periodic in the reciprocal lattice, the complete solution to (8.52)
for each n is a k-space surface with the periodicity of the reciprocal lattice. When a
branch of the Fermi surface is represented by the full periodic structure, it is said
to be described in a repeated zone scheme. Often, however, it is preferable to take
just enough of each branch of the Fermi surface so that every physically distinct level
is represented by just one point of the surface. This is achieved by representing each
branch by that portion of the full periodic surface contained within a single primitive
cell of the reciprocal lattice. Such a representation is described as a reduced zone

¢ In many important cases the Fermi surface is entirely within a single band, and generally it is found
to lie within a fairly small number of bands ((jmplcr 15).

21 If & is generally defined as the energy separating the highest occupied from the lowest unoccupied
level, then it 1s not uniquely specified in a solid with an energy gap, since any energy in the gap meets this
test. People nevertheless speak of “the Fermi energy” of an intrinsic semiconductor. What they mean is
the chemical potential, which is well defined at any nonzero temperature {Appendix B). As T— 0, the
chemical potential of a solid with an energy gap approaches the energy at the middle of the gap (page 575).
and one sometimes finds 1t asserted that this is the “Fermi energy™ of a solid with a gap. With either the
correct {undetermined) or colloguial definition of &, Eq. (8.52) asserts that solids with a gap have no
Fermi surface.



Density of Levels 143

scheme. The primitive cell chosen is often, but not always, the first Brillouin zone.
Fermi surface geometry and its physical implications will be illustrated in many
of the following chapters, particularly Chapters 9 and 15.

DENSITY OF LEVELS?2

One must often calculate quantities that are weighted sums over the electronic levels
of various one-electron properties. Such quantities are of the form??

Q=2 Zk 04(K), (8.53)

where for each n the sum is over all allowed k giving physically distinct levels, i.e., all
k of the form (8.27) lying in a single primitive cell.?*

In the limit of a large crystal the allowed values (8.27) of k get very close together,
and the sum may be replaced with an integral. Since the volume of k-space per allowed
k (Eq. (8.29)) has the same value as in the free electron case, the prescription derived
in the free electron case (Eq. (2.29)) remains valid, and we find that?*

.0 dk
0= % - 23 [ 00 @s

where the integral is over a primitive cell.

If, as is often the case,?® Q,(k) depends on n and k only through the energy &,(k),
then in further analogy to the free electron case one can define a density of levels
per unit volume (or “density of levels” for short) g(€) so that g has the form (cf. (2.60)):

q= jffﬂg(ﬁ)Q(S)- (8.55)
Comparing (8.54) and (8.55) we find that
g(€) = . gA€), (8.56)
where g,(€), the density of levels in the nth band, is given by
dk
gnl®) = | 75 0(8 — &x(K)), (8:57)

where the integral is over any primitive cell.

22 The reader can, without loss of continuity, skip this section at a first reading, referring back to it
in subsequent chapters when necessary.

23 The factor 2 is because each level specified by n and k can accommodate two electrons of opposite
spin. We assume that Q,(k) does not depend on the electron spin s. If it does, the factor 2 must be replaced
by a sum on s.

24 The functions Q,(k) usually have the periodicity of the reciprocal lattice, so the choice of primitive
cell is immaterial.

25 See page 37 for the appropriate cautionary remarks.

26 For example, if g is the electronic number density n, then Q(€) = f(€), where fis the Fermi function;
if g is the electronic energy density u, then Q(&) = Ef(€).
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An alternative representation of the density of levels can be constructed by noting
that, as in the free electron case (Eq. (2.62)):

(the number of allowed wave vectors
gn(€) d& = (2/V) x in the nth band in the energy range (8.58)
from & to & + dE).

The number of allowed wave vectors in the nth band in this energy range is just the
volume of a k-space primitive cell, with & < &,(k) < & + dg, divided by the volume
per allowed wave vector, Ak = (21)*/V. Thus

dk {1, e<6K <&+ d&}

Ricial 8.59
4 0, otherwise 359

g,(€) d& = j

Since dg is infinitesimal, this can also be expressed as a surface integral. Let S.(&)
be the portion of the surface &.(k) = € lying within the primitive cell, and let dk(k)
be the perpendicular distance between the surfaces Sq(€) and S,(& + dg) at the point
k. Then (Figure 8.2):

ds
gn(€) d€ = ——5 Ok(K). (8.60)
Sp(E) 4n
Figure 8.2
Sa(&+dE) An illustration in two dimensions of the construction expressed

in Eq. (8.60). The closed curves are the two constant-energy
surfaces, the required area is that lying between them (shaded),
and the distance Sk(k) is indicated for a particular k.

ll
To find an explicit expression for k(k) note that, since S4(€) is a surface of constant

energy, the k-gradient of &,(k), V&,(K), is a vector normal to that surface whose mag-
nitude is equal to the rate of change of &,(k) in the normal direction; ie.,

€ + d& = & + |V&,(k)| dk(K), (8.61)
and hence
Sk(k) = 2 (8.62)
- [ve®)| ’

Substituting (8.62) into (8.60), we arrive at the form

as 1

e} = .L,.m 4n* [VE,(K)| | GRe)

which gives an explicit relation between the density of levels and the band structure.
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Equation (8.63) and the analysis leading to it will be applied in subsequent
chapters.2” Here we only note the following quite general property of the density
of levels:

Because &,(k) is periodic in the reciprocal lattice, bounded above and below for
each n, and, in general, everywhere differentiable, there must be values of k in each
primitive cell at which |Vg| = 0. For example, the gradient of a differentiable function
vanishes at local maxima and minima, but the boundedness and periodicity of each
&,(k) insure that for each n there will be at least one maximum and minimum in
each primitive cell.28

When the gradient of &, vanishes, the integrand in the density of levels (8.63)
diverges. It can be shown that in three dimensions?® such singularities are integrable,
yielding finite values for g,. However, they do result in divergences of the slope,
dg,/de. These are known as van Hove singularities.>® They occur at values of & for
which the constant energy surface S,(€) contains points at which Vg(K) vanishes.
Since derivatives of the density of levels at the Fermi energy enter into all terms but
the first in the Sommerfeld expansion,®! one must be on guard for anomalies in low-
temperature behavior if there are points of vanishing Vg,(k) on the Fermi surface.

Typical van Hove singularities are shown in Figure 83 and are examined in
Problem 2, Chapter 9.

Figure 8.3
Characteristic van Hove sin- £,(8)
gularities in the density of
levels, indicated by arrows at
right angles to the &-axis.

This concludes our discussion of the general features of one-electron levels in a
periodic potential.3? In the following two chapters we consider two very important,
but quite different, limiting cases, which provide concrete illustrations of the rather
abstract discussions in this chapter.

37 See also Problem 2.

A very general analysis of how many points of vanishing gradient must occur is fairly complex
See, for example, G. Weinreich, Solids, Wiley, New York, 1965, pp. 73-79.

22 In one dimension g,(&) itself will be infinite at a van Hove singularity.

30 Essentially the same singularities occur in the theory of lattice vibrations. See Chapter 23.

M See, for example, Problem 2f, Chapter 2.

32 Problem 1 pursues the general analysis somewhat further in the tractable but somewhat misleading
case of a one-dimensional periodic potential.
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PROBLEMS

1. Periodic Potentials in One Dimension

The general analysis of electronic levels in a periodic potential, independent of the detailed features
of that potential, can be carried considerably further in one dimension. Although the one-dimen-
sional case is in many respects atypical (there is no need for a concept of a Fermi surface) or
misleading (the possibility—indeed, in two and three dimensions the likelihood—of band overlap
disappears), it is nevertheless reassuring to sce some of the features of three-dimensional band
structure we shall describe through approximate calculations, in Chapters 9, 10, and 11, emerging
from an exact treatment in one dimension.

Consider, then, a one-dimensional periodic potential U(x) (Figure 8.4). It is convenient to view
the ions as residing at the minima of U, which we take to define the zero of energy. We choose
to view the periodic potential as a superposition of potential barriers v(x) of width a, centered at
the points x = +na (Figure 8.5):

oo

Ux)= Y ov(x— na. (8.64)

n=-—o

Figure 8.4
A one-dimensional periodic
Utx) potential U(x). Note that the
ions occupy the positions of
a Bravais lattice of lattice
constant a. It is convenient
to take these points as having
| s x coordinates (n + 4)a, and to
) a2 0 a2 3af2 choose the zero of potential
to occur at the position of

the ion.

Figure 8.5

Illustrating particles incident
o 0r) px) from tl}e left (a) and right (b)
on a single one of the bar-
riers separating neighboring
ions in the periodic potential

—— o L L of Figure 8.4. The incident,
T T transmitted, and reflected
-af2 af? 3 —af2 aj2 o waves are indicated by ar-

@ (b) rows along the direction of

propagation, proportional to
the corresponding ampli-
tudes.

The term t(x — na) represents the potential barrier against an electron tunneling between the
ions on opposite sides of the point na. For simplicity we assume that 1{x) = ¢{—x) (the one-
dimensional analogue of the inversion symmetry we assumed above), but we make no other
assumptions about v, so the form of the periodic potential U is quite general.
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The band structure of the one-dimensional solid can be expressed quite simply in terms of the
properties of an electron in the presence of a single-barrier potential «{x). Consider therefore an
electron incident from the left on the potential barrier ©(x) with energy®? & = h2K?/2m. Since
t{x) = 0 when |x| > a/2. in these regions the wave function y,(x) will have the form

Yu(x) = X + re ™, x < —

(oS J i~

>, xz-. (8.65)

This is illustrated schematically in Figure 8.5a.
The transmission and reflection coefficients ¢ and r give the probability amplitude that the
electron will tunnel through or be reflected from the barrier; they depend on the incident wave
vector K in a manner determined by the detailed features of the barrier potential v. However,
one can deduce many properties of the band structure of the periodic potential U by appealing
only to very general properties of ¢ and r. Because v is even, ,(x) = (- x) is also a solution

to the Schrédinger equation with energy &. From (8.65) it follows that y.(x) has the form
Ylx) = te™™,  x< -~

[l

[ H I~

=e¢ K > x2 ;. (8.66)

Evidently this describes a particle incident on the barrier from the right, as depicted in Figure 8.5b.

Since ¥, and y, are two independent solutions to the single-barrier Schrodinger equation with

the same energy, any other solution with that energy will be a linear combination®* of these two:

W = A, + By, In particular, since the crystal Hamiltonian is identical to that for a single

ion in the region —a/2 < x < a/2, any solution to the crystal Schrodinger equation with energy
& must be a linear combination of ; and ¥, in that region:

W) = A + BYly),  —5 <x <3 @67
Now Bloch’s theorem asserts that i can be chosen to satisfy
Ylx + a) = *yY(x), (8.68)
for suitable k. Differentiating (8.68) we also find that ' = dy//dx satisfies
Y(x + a) = @*Y(x). (8.69)

(a) By imposing the conditions (8.68) and (8.69) at x = —a/2, and using (8.65) to (8.67),
show that the energy of the Bloch electron is related to its wave vector k by:
2 —-r | R . h2K?

___ pika = ,—iKa o 3 8-7
2t E +21e ’ & 2mn G0

cos ka =

Verify that this gives the right answer in the free electron case (v = 0).

33 Note: in this problem K is a continuous variable and has nothing to do with the reciprocal lattice.
34 A special case of the general theorem that there are n independent solutions to an nth-order linecar
differential equation.
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Equation (8.70) is more informative when one supplies a little more information about the
transmission and reflection coefficients. We write the complex number 1 in terms of its magnitude
and phase:

t = | & 8.71)

The real number & is known as the phase shift, since it specifies the change in phase of the trans-
mitted wave relative to the incident one. Electron conservation requires that the probability of
transmission plus the probability of reflection be unity:

1= + 4% (8.72)

This, and some other useful information, can be proved as follows. Let ¢, and ¢, be any two
solutions to the one-barrier Schrodinger equation with the same energy:

h* h2K?
et thi=—— i i= L2 73
2m¢[ T 2m ¢ y (Fs)

Define w{¢, ¢2) (the “Wronskian”) by
Wby, d2) = ¢1'()P2(x) — dr(x)2'(x). (8.74)

(b) Prove that w is independent of x by deducing from (8.73) that its derivative vanishes.

(c} Prove(8.72) by evaluating w{{. ¢,*) for x < —af2and x > a/2, noting that because v(x)
is real ;* will be a solution to the same Schrédinger equation as ;.

(d) By evaluating w(ys, ¢,*) prove that re* is purc imaginary, so r must have the form

r= il (8.75)

where & is the same as in (8.71).
(e) Show as a consequence of (8.70). (8.72). and (8.75) that the energy and wave vector of the
Bloch electron are related by

cos (Ka + d)
it . et . FPTY ka, = . 8.7
|‘| cos ka & m | (8.76)

Since || is always less than one, but approaches unity for large K (the barrier becomes in-
creasingly less effective as the incident energy grows). the left side of (8.76) plotted against K has
the structure depicted in Figure 8.6. For a given k, the allowed values of K (and hence the allowed
energies &(k) = h?K?2m) are given by the intersection of the curve in Figure 8.6 with the hori-
zontal line of height cos (ka). Note that values of K in the neighborhood of those satisfying

Ka+ 6 =nn (8.77)

give |cos (Ka + 4)! [¢| > 1. and are therefore not allowed for any k. The corresponding regions
of energy are the energy gaps. If 8 is a bounded function of K (as is generally the case). then
there will be infinitely many regions of forbidden energy, and also infinitely many regions of
allowed energies for each value of k.
(f) Suppose the barrier is very weak (so that |l = 1, ] = 0, 6 = 0). Show that the energy
gaps are then very narrow, the width of the gap containing K = nrn/a being
2

h
Epp < 21N % |- (8.78)

(2) Suppose the barrier is very strong, so that [i] = 0. || = 1. Show that « lowed bands



Problems 149

Figure 8.6

Characteristic form of the
function cos (Ka + 8)/|¢|. Be-
cause [t(K)| is always less
than unity the function will
exceed unity in magnitude
in the neighborhood of solu-

tions to Ka + 6(K) = nn.
] -\ o~ Equation (8.76) can be satis-
fied for real k if and only
\ / \ if the function is less than
0 ) : >k ynity in magnitude. Conse-
; \ e / _ \ / quently there will be allowed
-1 (unshaded) and forbidden
\/ ~— (shaded) regions of K (and
therefore of & = h*K?/2m).
Note that when [t is very
near unity (weak potential)
the forbidden regions will be
narrow, but if | is very small
(strong potential) the allowed

regions will be narrow.

of energies are then very narrow, with widths
Emax — Emin = O(J1]). 8.79)

(h) As a concrete example, one often considers the case in which 1{x) = gé(x), where &(x)
is the Dirac delta function (a special case of the “Kronig-Penney model”). Show that in this case
h’K
cotd=———, || = cosé. (8.80)
mg
This model is a common textbook example of a one-dimensional periodic potential. Note, how-
ever, that most of the structure we have established is, to a considerable degree, independent of
the particular functional dependence of |¢| and & on K.

2. Density of Levels

{a) In the free electron case the density of levels at the Fermi energy can be written in the
form (Eq. (2.64)) g(€F) = mky/h*n*. Show that the general form (8.63) reduces to this when
(k) = h*k*/2m and the (spherical) Fermi surface lies entirely within a primitive cell.

(b) Consider a band in which, for sufficiently small k, §,(k) = & + (h*/2)(k.2/m, + k2 /m, +
k.*/m,) (as might be the case in a crystal of orthorhombic symmetry) where m,, m,, and m. are
positive constants. Show that if £ is close enough to &; that this form is valid, then g,(€) is pro-
portional to (& — &0)'/%, so its derivative becomes infinite (van Hove singularity) as & approaches
the band minimum. (Hint: Use the form (8.57) for the density of levels.) Deduce from this that if
the quadratic form for &,(k) remains valid up to &, then g,(Ef) can be written in the obvious
generalization of the free electron form (2.65):

n
& — &

where n is the contri* “on of the electrons in the band to the total electronic density.

glEr) = % (8.81)
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(¢) Consider the density of levels in the neighborhood of a saddle point, where &,(k}) = & +
(h2/2)(k2/my + ky2/m, — k.%/m.) where my, m,, and m, are positive constants. Show that when
& = 8o, the derivative of the density of levels has the form

constant, & > &p;

gn(€) =
(& —&)7Y & <& (8.82)
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One can gain substantial insight into the structure imposed on the electronic energy
levels by a periodic potential, if that potential is very weak. This approach might
once have been regarded as an instructive, but academic, exercise. We now know,
however, that in many cases this apparently unrealistic assumption gives results
surprisingly close to the mark. Modern theoretical and experimental studies of the
metals found in groups 1, 1L, 111, and IV of the periodic table (ie., metals whose
atomic structure consists of s and p electrons outside of a closed-shell noble gas
configuration) indicate that the conduction electrons can be described as moving in
what amounts to an almost constant potential. These elements are often referred to
as “nearly free electron” metals, because the starting point for their description is the
Sommerfeld free electron gas, modified by the presence of a weak periodic potential.
In this chapter we shall examine some of the broad general features of band structure
from the almost free electron point of view. Applications to particular metals will
be examined in Chapter 15.

It is by no means obvious why the conduction bands of these metals should be
so free-electron-like. There are two fundamental reasons why the strong interactions
of the conduction electrons with each other and with the positive ions can have the
net effect of a very weak potential.

1. The electron-ion interaction is strongest at small separations, but the conduction
electrons are forbidden (by the Pauli principle) from entering the immediate
neighborhood of the ions because this region is already occupied by the core
clectrons.

2. In the region in which the conduction electrons are allowed, their mobility
further diminishes the net potential any single electron experiences, for they
can screen the fields of positively charged ions, diminishing the total effective
potential.

These remarks offer only the barest indication of why the following discussion
has extensive practical application. We shall return later to the problem of justifying
the nearly free electron approach, taking up point 1 in Chapter 11 and point 2 in
Chapter 17.

GENERAL APPROACH TO THE SCHRODINGER EQUATION
WHEN THE POTENTIAL IS WEAK

When the periodic potential is zero, the solutions to Schrodinger’s equation are plane
waves. A reasonable starting place for the treatment of weak periodic potentials is
therefore the expansion of the exact solution in plane waves described in Chapter 8.
The wave function of a Bloch level with crystal momentum k can be written in the
form given in Eq. (8.42):

IALES ;q_xe“"‘"', ©.1)

where the coefficients ¢, _x and the energy of the level & are determined by the set
of Eqgs. (8.41):

2
[g k — K)? - 8] g+ E Up €k = 0. ©2)
m K
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The sum in (9.1) is over all reciprocal lattice vectors K, and for fixed k there is an
equation of the form (9.2) for each reciprocal lattice vector K. The (infinitely many)
different solutions to (9.2) for a given k are labeled with the band index n. The wave
vector k can (but need not) be considered to lie in the first Brillouin zone of k-space.

In the free electron case, all the Fourier components Uy are precisely zero. Equation
(9.2) then becomes i

(EE-K — &g =0, 9.3
where we have introduced the notation:
hz
82 =g 9.4
q m q 9.4

Equation (9.3) requires for each K that either ¢,_x = 0 or & = &2_,. The latter
possibility can occur for only a single K, unless it happens that some of the &)
are equal for several different choices of K. If such degeneracy does not occur, then
we have the expected class of free electron solutions:

&=8 Y, ocem 9.5
If, however, there is a group of reciprocal lattice vectors K, .. ., K,, satisfying
83—1{, =S == Ef_xm, (9.6)

then when € is equal to the common value of these free electron energies there arc
m independent degencrate plane wave solutions. Since any linear combination of
degenerate solutions is also a solution, one has complete freedom in choosing the
coefficients ¢, forK =K,,... K _.

These simple observations acquire more substance when the Uy are not zero, but
very small. The analysis still divides naturally into two cases, corresponding to the
nondegenerate and degenerate cases for free electrons. Now, however, the basis for
the distinction is not the exact equality’ of two or more distinct free electron levels,

but only whether they are equal aside from terms of order U.

Case 1 Fix k and consider a particular reciprocal lattice vector K, such that the
free electron energy aﬁ_,ii is far from the values of & _ (for all other K) compared
with U (see Figure 9.1)*:

|&f -k, — 6| » U,  forfixedk and all K # K;. 9.7)
We wish to investigate the effect of the potential on that free electron level given by:
E=8&x, ax=0 K#K,. (9.8)

! The reader familiar with stationary perturbation theory may think that if there is no exacr de-
generacy, we can always make all level differences large compared with U by considering sufficiently
small U. That is indeed true for any given k. However, once we are given a definite U, no matter how
small, we want a procedure valid for all k in the first Brillouin zone. We shall see that no matter how
small U is we can always find some values of k for which the unperturbed levels are closer together than
U. Therefore what we are doing is more subtle than conventional degenerate perturbation theory.

2 In inequalities of this form we shall use U to refer to a typical Fourier component of the potential.
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Iy Figure 9.1

For the range of k within limits
indicated by the dark band the
free electron levels &,y and
&, x differ by an energy O(U).

O(U){

K, K k

Setting K = K, in Eq. (9.2) (and using the short notation (9.4)) we have (dropping
the prime from the summation index):

(& — & x)oux, = ZK: Uk -k,Cu-&- 99

Because we have picked the additive constant in the potential energy so that Ux = 0
when K = 0 (see page 137), only terms with K # K; appear on the right-hand side
of (9.9). Since we are examining that solution for which ¢, _y vanishes when K # K,
in the limit of vanishing U, we expect the right-hand side of (9.9) to be of second
order in U. This can be explicitly confirmed by writing Eq. (9.2) for K # K, as

- le-xck-xl + yx'—xck--x‘

Gk = 0] o -
€—8& x K7k &— & k

(9.10)

We have separated out of the sum in (9.10) the term containing ¢, since it will
be an order of magnitude larger than the remaining terms, which involve ¢,_. for
K’ # K,. This conclusion depends on the assumption (9.7) that the level gl K is not
nearly degenerate to some other &2_y. Such a near degeneracy could cause some of
the denominators in (9.10) to be of order U, canceling the explicit U in the numerator
and resulting in additional terms in the sum in (9.10) comparable to the K = K, term.
Therefore, provided there is no near degeneracy, ’

U, . k€&
Gk = "‘_—f‘go"—“' + O(U?). ©.11)
k-K
Placing this in (9.9), we find:
Ug_x, Uk, -
(& — & k) x, = Zﬂ%'—"c“, + O(UP). ©.12)
K &— &«

Thus the perturbed energy level & differs from the free electron value Eﬁ_h by terms
of order U2. To solve Eq. (9.12) for € to this order, it therefore suffices to replace
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the & appearing in lhe denominator on the right-hand side by & p leading to the
following expression? for &, correct to second order in U:

2
& =g 4 + Z% + O(U3). 9.13)
kK k-K

Equation (9.13) asserts that weakly perturbed nondegenerate bands repel each

other, for every level &) _ that lies below &f_, contributes a term in (9.13) that raises

the value of &, while every level that lies above EE_KI contributes a term that lowers

the energy. However, the most important feature to emerge from this analysis of the

case of no near degeneracy, is simply the gross observation that the shift in energy

from the free electron value is second order in U. In the nearly degenerate case (as

we shall now see) the shift in energy can be linear in U. Therefore, to leading order

in the weak periodic potential, it is only the nearly degenerate free clectron levels

that are significantly shifted, and we must devote most of our attention to this
important case.

Case 2 Suppose the value of k is such that there are reciprocal lattice vectors K, . . .,
K, with &, ..., & _ all within order U of each other,* but far apart from the
other &)_x on the scale of U:

etk -8 k] >»U, i=1....m K=#K,,...,K,. (914

In this case we must treat separately those equations given by (9.2) when K is set
equal to any of the m values K,, . .., K,,.. This gives m equations corresponding to
the single equation (9.9) in the nondegenerate case. In these m equations we separate
from the sum those terms containing the coefficients ¢, _ K, ,j = 1,..., m which need
not be small in the limit of vanishing interaction. from "the remaining ¢, _g, which
will be at most of order U. Thus we have

& — ﬁf-xi)fu-x,. = E Ul(j—lc,-cx—xj + Z Ux_lc,.c&_m i=1...,m (9.15)
i=1 K#Kp. .. Ky
Making the same separation in the sum, we can write Eq. (9.2) for the remaining
levels as
1

Pt gl
k-K = S_SER

(E AR

+ b3 UK‘---!{CR—K’)- K#K,,....,K,, - (9.16)

(which corresponds to equation (9.10) in the case of no near degeneracy).
Since ¢,y will be at most of order U when K # K,, ..., K,, Eq. (9.16) gives
1

Cyk = 56— E Ux KCk-K; an O(Uz) .17
& — 8|. K j=

3 wWeuse Eq.(8.34), U_gy = Uy,
4 In one dimension m cannot exceed 2, but in three dimensions it can be quite large.
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Placing this in (9.15), we find that

(& - 83-;,)5'&. K. = _Zl U,
j=

¥ i’( 2 P;‘—‘f%})ck_xj+0(u3). ©.18)

m

Compare this with the result (9.12) in the case of no near degeneracy. There we
found an explicit expression for the shift in energy to order U? (to which the set of
equations (9.18) reduces when m = 1). Now, however, we find that to an accuracy
of order U? the determination of the shifts in the m nearly degenerate levels reduces
to the solution of m coupled equations" for the ¢,_x. Furthermore, the coefficients
in the second term on the right-hand side of these equations are of higher order in
U than those in the first.® Consequently, to find the leading corrections in U we can
replace (9.18) by the far simpler equations:

€ - GE-x,.)Cu—x, =2 ij-—xffk K i=1....m 9.19)
i=1

which are just the general equations for a system of m quantum levels.”

ENERGY LEVELS NEAR A SINGLE BRAGG PLANE

The simplest and most important example of the preceding discussion is when two
free electron levels are within order U of each other, but far compared with U from
all other levels. When this happens, Eq. (9.19) reduces to the two equations:

& - Eg—x,)ck—x, = Ug, kfx-k,»
(& — &8-x)Cuk-x, = Uk -kfu-ky (9-20)
When only two levels are involved, there is little point in continuing with the

notational convention that labels them symmetrically. We therefore introduce vari-
ables particularly convenient for the two-level problem:

g=k—-K, and K=K, —-K,, 9.21)
and write (9.20) as
(& — 8Jcg = UxCqro
(€ — & gk = U-xey = Uk 9.22)
s These are rather closely related to the equations of second-order degenerate perturbation theory,
to which they reduce when all the Gf_“_ are rigorously equal, i = 1,...,m. (See L. D. Landau and
E. M. Lifshitz, Quantum Mechanics, Addison-Wesley, Reading Mass., 1965, p. 134)
6 The numerator is explicitly of order U?, and since only K-values different from K, ..., K,, appear
in the sum, the denominator is not of order U when & is close to the &) Ko i = 1,...,m

7 Note that the rule of thumb for going from (9.19) back to the more accurate form in (9.1 8) is simply
that U should be replaced by U, where

5 Uk, -x Uxk-x,
ij—x‘ = ij-x, + Z -

0
Kekpo . Kp, ©  Sk-k
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We have:
Ea~ 8 g |80 & «]>»U  forK #K0. (9.23)

Now & is equal to &_ for some reciprocal lattice vector only when |q| = |q — K.
This means (Figure 9.2a) that q must lie on the Bragg plane (see Chapter 6) bisecting
the line joining the origin of k space to the reciprocal lattice point K. The assertion
that & = & _ only for K = K requires that q lie only on this Bragg plane, and on
no other.

Figure 9.2

(a) If jg| = Jg — K], then the point q must
lie in the Bragg plane determined by K.
(b) If the point q lies in the Bragg plane,

then the vector g — 4K is parallel to the
plane.
(2)

0 iK

Thus conditions (9.23) have the geometric significance of requiring q to be close
to a Bragg plane (but not close to a place where fwo or more Bragg planes intersect).
Therefore the case of two nearly degenerate levels applies to an electron whose
wave vector very nearly satisfies the condition for a single Bragg scattering.® Corre-
spondingly, the general case of many nearly degenerate levels applies to the treatment
of a free electron level whose wave vector is close to one at which many simultaneous
Bragg reflections can occur. Since the nearly degenerate levels are the most strongly
affected by a weak periodic potential, we conclude that a weak periodic potential has
its major effects on only those free electron levels whose wave vectors are close to ones
at which Bragg reflections can occur.

We discuss systematically on pages 162 to 166 when free electron wave vectors
do, or do not, lic on Bragg planes, as well as the general structure this imposes on
the energy levels in a weak potential. First, however, we examine the level structure

®  An incident X-ray beam undergoes Bragg reflection only if its wave vector lies on a Bragg plane
(see Chapter 6).
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when only a single Bragg plane is nearby, as determined by (9.22). These equations
have a solution when:

_ g0 _I!
et =l g 9.24)
— UK 8 - E‘.q_x
This leads to a quadratic equation
(& — &9)(& — &-x) = |Ug| 9.25)
The two roots
0 _ g0 \2 1/2
&=+ &t [( - “-‘l‘) + |U.<|1] (9.26)

give the dominant effect of the periodic potential on the energies of the two free
electron levels 62 and Bg_x when q is close to the Bragg plane determined by K.
These are plotted in Figure 9.3.

Figure 9.3
& Plot of the energy bands given by Eq. (9.26) for
q parallel to K. The lower band corresponds to
the choice of a minus sign in (9.26) and the
upper band to a plus sign. When q = 3K, the
two bands are separated by a band gap of mag-
nitude 2|U,|. When q is far removed from the
1N Bragg plane, the levels (to leading order) are
A 25,1 indistinguishable from their free electron values
(denoted by dotted lines).

i 1K q

The result (9.26) is particularly simple for points lying on the Bragg plane since,
when q is on the Bragg plane, £ = & _x. Hence

£§=8 +

Uy, q ona single Bragg plane. 9.27)

Thus, at all points on the Bragg plane, one level is uniformly raised by IU,({ and the
other is uniformly lowered by the same amount.
It is also easily verified from (9.26) that when &2 = &)_y,

oe
q
i.e., when the point q is on the Bragg plane the gradient of £ is parallel to the plane
(see Figure 9.2b). Since the gradient is perpendicular to the surfaces on which a

h?
= (4 - 4K ©28)
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function is constant, the constant-energy surfaces at the Bragg plane are perpendicular
to the plane.”

When q lies on a single Bragg plane we may also easily determine the form of
the wave functions corresponding to the two solutions & = &) + |U |- From (9.22),
when & is given by (9.27), the two coefficients ¢; and ¢, g satlsfy

cg = + sgn (Uk)eg—x- (9.29)

Since these two coefficients are the dominant ones in the plane-wave expansion (9.1),
it follows that if Ug > 0, then

W)? o (cos 3K - r)%, & = &F + |Ugl,

W) oc (sin 4K -r)?, &= & — |Uyl;
while if Uy < 0, then

W oc (sin3K - 1)?, & = & + |Uyl,

W@ oc (cos 3K - 1% & = & — |Uyl. (9.30)
Sometimes the two types of linear combination are called “p-like” (|/|* ~ sin? 3K - r)
and “s-like” (|y/]* ~ cos® 3K - r) because of their position dependence near lattice
points. The s-like combination, like an atomic s-level, does not vanish at the ion;

in the p-like combination the charge density vanishes as the square of the distance
from the ion for small distances, which is also a characteristic of atomic p-levels.

I

Il

ENERGY BANDS IN ONE DIMENSION

We can illustrate these general conclusions in one dimension, where twofold degen-
eracy is the most that can ever occur. In the absence of any interaction the electronic
energy levels are just a parabola in k (Figure 9.4a). To leading order in the weak
one-dimensional periodic potential this curve remains correct except near Bragg
“planes” (which are points in one dimension). When g is near a Bragg “plane” cor-
responding to the reciprocal lattice vector K (i.e., the point 3K) the corrected energy
levels are determined by drawing another free electron parabola centered around K
(Figure 9.4b), noting that the degeneracy at the point of intersection is split by 2| Ug|
in such a way that both curves have zero slope at that point, and redrawing Figure
9.4b to get Figure 9.4c. The original free electron curve is therefore modified as in
Figure 9.4d. When all Bragg planes and their associated Fourier components are
included, we end up with a set of curves such as those shown in Figure 9.4e. This
particular way of depicting the energy levels is known as the extended-zone scheme.

If we insist on specifying all the levels by a wave vector k in the first Brillouin zone,
then we must translate the pieces of Figure 9.4e, through reciprocal lattice vectors,
into the first Brillouin zone. The result is shown in Figure 9.4f. The representation
is that of the reduced-zone scheme (see page 142).

® This result is often, but no1 always, true even when the periodic potential is not weak, because
the Bragg planes occupy positions of fairly high symmetry.
10 For simplicity we assume here that Uy is real (the crystal has inversion symmetry).
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Figure 9.4

(a) The free electron & vs. k
parabola in one dimension.
(b) Step 1 in the construction
to determine the distortion
in the free electron parabola
in the neighborhood of a
Bragg “plane,” due to a weak
periodic potential. If the
Bragg “plane” is that deter-
mined by K, a second free
electron parabola is drawn,
centered on K. (c) Step 2 in
the construction to deter-
mine the distortion in the
free electron parabola in the
neighborhood of a Bragg
“plane.” The degeneracy of
the two parabolas at K/2
is split. (d) Those portions
of part (c) corresponding
to the original free electron
parabola given in (a). (¢) EF
fect of all additional Bragg
“planes” on the free electron
parabola. This particular
way of displaying the elec-
tronic levels in a periodic
potential is known as the
extended-zone scheme. () The
levels of (e), displayed in a
reduced-zone scheme. (g) Free
electron levels of (e) or (f) in
a repeated-zone scheme.

One can also emphasize the periodicity of the labeling in k-space by periodically
extending Figure 9.4f throughout all of k-space to arrive at Figure 9.4g, which em-
phasizes that a particular level at k can be described by any wave vector differing
from k by a reciprocal lattice vector. This representation is the repeated-zone scheme
(see page 142). The reduced-zone scheme indexes each level with a k lying in the first
zone, while the extended-zone scheme uses a labeling emphasizing continuity with
the free electron levels. The repeated-zone scheme is the most general representation,
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but is highly redundant, since the same level is shown many times, for all equivalent
wavevectors k, k + K,k + 2K, ....

ENERGY-WAVE-VECTOR CURVES IN THREE DIMENSIONS

In three dimensions the structure of the energy bands is sometimes displayed by
plotting € vs. k along particular straight lines in k-space. Such curves are generally
shown in a reduced-zone scheme, since for general directions in k-space they are not
periodic. Even in the completely free electron approximation these curves are surpris-
ingly complex. An example is shown in Figure 9.5, which was constructed by plotting,
as k varied along the particular lines shown, the values of &) g = h%(k — K)?/2m for
all reciprocal lattice vectors K close enough to the origin to lead to energies lower
than the top of the vertical scale.

Figure 9.5

Free clectron energy levels
for an fcc Bravais lattice. The
energies are plotted along
lines in the first Brillouin
zone joining the points
I'k=0), K, L, W, and X.
&, is the energy at point X
([#*/2m][2n/a)?). The hori-
zontal lines give Fermi
energies for the indicated
numbers of electrons per
primitive cell. The number of
dots on a curve specifies the
number of degenerate free
electron levels represented by
the curve. (From F. Herman,
in An Atomistic Approach to
the Nature and Properties of
Materials, J. A. Pask, ed,
Wiley, New York, 1967.)

£y

w

M WA W hel GO
Electrons per unit cell

Note that most of the curves are highly degenerate. This is because the directions
along which the energy has been plotted are all lines of fairly high symmetry, so
points along them are likely to be as far from several other reciprocal lattice vectors
as they are from any given one. The addition of a weak periodic potential will in
general remove some, but not necessarily all, of this degeneracy. The mathematical
theory of groups is often used to determine how such degeneracies will be split.

THE ENERGY GAP

Quite generally, a weak periodic potential introduces an “energy gap” at Bragg
planes. By this we mean the following:
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When Ux = 0, as k crosses a Bragg plane the energy changes continuously from
the lower root of (9.26) to the upper, as illustrated in Figure 9.4b. When Uy # 0,
this is no longer so. The energy only changes continuously with k, as the Bragg plane
is crossed, if one stays with the lower (or upper) root, as illustrated in Figure 9.4c.
To change branches as k varies continuously it is now necessary for the energy to
change discontinuously by at least 2|Ug|.

We shall see in Chapter 12 that this mathematical separation of the two bands
is reflected in a physical separation: When the action of an external field changes
an electron’s wave vector, the presence of the energy gap requires that upon crossing
the Bragg plane, the electron must emerge in a level whose energy remains in the
original branch of &(K). It is this property that makes the energy gap of fundamental
importance in electronic transport properties.

BRILLOUIN ZONES

Using the theory of electrons in a weak periodic potential to determine the complete
band structure of a three-dimensional crystal leads to geometrical constructions of
great complexity. It is often most important to determine the Fermi surface (page 141)
and the behavior of the §,(k) in its immediate vicinity.

In doing this for weak potentials, the procedure is first to draw the free electron
Fermi sphere centered at k = 0. Next, one notes that the sphere will be deformed
in a manner of which Figure 9.6 is characteristic'! when it crosses a Bragg plane and
in a correspondingly more complex way when it passes near several Bragg planes.
When the effects of all Bragg planes are inserted, this leads to a representation of the
Fermi surface as a fractured sphere in the extended-zone scheme. To construct the
portions of the Fermi surface lying in the various bands in the repeated-zone scheme
one can make a similar construction, starting with free electron spheres centered
about all reciprocal lattice points. To construct the Fermi surface in the reduced-zone
scheme, one can translate all the pieces of the single fractured sphere back into the
first zone through reciprocal lattice vectors. This procedure is made systematic
through the geometrical notion of the higher Brillouin zones.

Recall that the first Brillouin zone is the Wigner-Seitz primitive cell of the reciprocal
lattice (pages 73 and 89), i.e. the set of points lying closer to K = 0 than to any other

Figure 9.6

(a) Free electron sphere cut-
ting Bragg plane located at
1K from the origin (U = 0).
(b) Deformation of the free
electron sphere near the
Bragg plane when Uy # 0.
The constant-energy surface
intersects the plane in two
® circles, whose radi are cal-
culated in Problem 1.

(@)

11 This follows from the demonstration on page 159 that a constant-energy surface is perpendicular

to a Bragg plane when they intersect, in the nearly free electron approximation.
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reciprocal lattice point. Since Bragg planes bisect the lines joining the origin to points
of the reciprocal lattice, one can equally well define the first zone as the set of points
that can be reached from the origin without crossing any Bragg planes.'?

Higher Brillouin zones are simply other regions bounded by the Bragg planes,
defined as follows:

The first Brillouin zone is the set of points in k-space that can be reached from
the origin without crossing any Bragg plane. The second Brillouin zone is the set of
points that can be reached from the first zone by crossing only one Bragg plane. The
(n + 1)th Brillouin zone is the set of points not in the (1 — 1)th zone that can be
reached from the nth zone by crossing only one Bragg plane.

Alternatively, the nth Brillouin zone can be defined as the set of points that can be
reached from the origin by crossing 7 — 1 Bragg planes, but no fewer.

These definitions are illustrated in two dimensions in Figure 9.7. The surface of
the first three zones for the fcc and bec lattices are shown in Figure 9.8. Both definitions
emphasize the physically important fact that the zones are bounded by Bragg planes.
Thus they are regions at whose surfaces the effects of a weak periodic potential are
important (i.c., first order), but in whose interior the free electron energy levels are
only perturbed in second order.

Figure 9.7

Tllustration of the definition of the Brillouin
zones for a two-dimensional square Bravais
lattice. The reciprocal lattice is also a square
lattice of side b. The figure shows all Bragg
planes (lines, in two dimensions) that lie within
the square of side 2b centered on the origin.
These Bragg planes divide that square into
regions belonging to zones 1 to 6. (Only zones
1, 2, and 3 are entirely contained within the
square, however.)

It is very important to note that each Brillouin zone is a primitive cell of the
reciprocal lattice. This is because the nth Brillouin zone is simply the set of points
that have the origin as the nth nearest reciprocal lattice point (a reciprocal lattice
point K is nearer to a point k than k is to the origin if and only if k is separated from
the origin by the Bragg plane determined by K). Given this, the proof that the nth
Brillouin zone is a primitive cell is identical to the proofon page 73 that the Wigner-
Seitz cell (i.e, the first Brillouin zone) is primitive, provided that the phrase “nth
nearest neighbor” is substituted for “nearest neighbor” throughout the argument.

12 We exclude from consideration points lying on Bragg planes, which turn out to be points common
to the surface of two or more zones. We define the zones in terms of their interior points.
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(a) (b)

Figure 9.8

Surfaces of the first, second.
and third Brillouin zones for
(a) body-centered cubic and
(b) face-centered cubic crys-
tals. (Only the exterior sur-
faces are shown. It follows
from the definition on page
163 that the interior surface
of the nth zone is identical
to the exterior surface of the
(n — I)th zone) Ewvidently
the surfaces bounding the
zones become ‘increasingly
complex as the zone number
increases. In practice it is
often simplest to construct
free electron Fermi surfaces
by procedures (such as those
described in Problem 4) that
avoid making use of the ex-
plicit form of the Brillouin
zones. (After R. Luck. doc-
toral dissertation, Techni-
sche Hochschule, Stuttgart,
1965.)

Because each zone is a primitive cell, there is a simple algorithm for constructing
the branches of the Fermi surface in the repeated-zone scheme'*:

1. Draw the free electron Fermi sphere.

2. Deform it slightly (as illustrated in Figure 9.6) in the immediate vicinity of every
Bragg plane. (In the limit of exceedingly weak potentials this step is sometimes

ignored to a first approximation.)

3. Take that portion of the surface of the free electron sphere lying within the nth
Brillouin zone, and translate it through all reciprocal lattice vectors. The resulting
surface is the branch of the Fermi surface (conventionally assigned to the nth

band) in the repeated-zone scheme.'*

13 The representation of the Fermi surface in the repeated-zone scheme 15 the most general. After
surveying each branch in its full periedic splendor. one can pick that primitive cell which most lucidly
represents the topological structure of the whole (which is often, but by no means always. the first Brillouin

zone).

1+ An alternative procedure is to translate the pieces of the Fermi surface in the nth zone through
those reciprocal lattice vectors that take the pieces of the nth zone in which they are contained, into the
first zone. {Such translations exist because the nth zone is a primitive cell.) This is illustrated in Figure 9.9.
The Fermi surface in the repeated-zone scheme is then constructed by translating 1+ -esulting first zone

structures through all reciprocal lattice vectors.
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Figure 9.9

The frec electron Fermi sphere for a face-centered cubic metal of valence 4. The first zone
lies entirely within the interior of the sphere, and the sphere does not extend beyond the
fourth zone. Thus the only zone surfaces intersected by the surface of the sphere are the
(exterior) surfaces of the second and third zones (cf. Figure 9.8b). The second-zone Fermi
surface consists of those parts of the surface of the sphere lying entirely within the poly-
hedron bounding the second zone (i.e., all of the sphere except the parts extending beyond
the polyhedron in (a)). When translated through reciprocal lattice vectors into the first
zone, the pieces of the second-zone surface give the simply connected figure shown in (c).
(It is known as a “hole surface™; the levels it encloses have higher energies than those
outside). The third-zone Fermi surface consists of those parts of the surface of the sphere
lying outside of the second zone (i.., the parts extending beyond the polyhedron in (a))
that do not lie outside the third zone (i.e., that are contained within the polyhedron shown
in (b)). When translated through reciprocal lattice vectors into the first zone, these pieces
of sphere give the multiply connected structure shown in (d). The fourth-zone Fermi sur-
face consists of the remaining parts of the surface of the sphere that lie outside the third
zone (as shown in (b) ). When translated through reciprocal lattice vectors into the first
zone they form the **pockets of electrons™ shown in (e). For clarity (d) and (e) show only
the intersection of the third and fourth zone Fermi surfaces with the surface of the first
zone. (From R. Liick, op. cit.)
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Generally speaking, the effect of the weak periodic potential on the surfaces
constructed from the free electron Fermi sphere without step 2, is simply to round
off the sharp edges and corners. If, however, a branch of the Fermi surface consists
of very small pieces of surface (surrounding either occupied or unoccupied levels,
known as “pockets of electrons” or “pockets of holes”), then a weak periodic potential
may cause these to disappear. In addition, if the free electron Fermi surface has
parts with a very narrow cross section, a weak periodic potential may cause it to
become disconnected at such points.

Some further constructions appropriate to the discussion of almost free electrons
in fec crystals are illustrated in Figure 9.10. These free-electron-like Fermi surfaces
are of great importance in understanding the real Fermi surfaces of many metals.
This will be illustrated in Chapter 15.

First zone Second zone Third zone Fourth zone

Valence
None

Vale .
3 4 A\\}__..-J\ /
NP

\“‘\‘_‘ //

Figure 9.10

The free electron Fermi surfaces for face-centered cubic metals of valence 2 and 3. (For
valence 1 the surface lies entirely within the interior of the first zone and therefore remains
a sphere to lowest order; the surface for valence 4 is shown in Figure 9.9.) All branches
of the Fermi surface are shown. The primitive cells in which they are displayed have the
shape and orientation of the first Brillouin zone. However, the cell is actually the first zone
(ie., is centered on K = 0) only in the figures illustrating the second zone surfaces. In the
first and third zone figures K = 0 lies at the center of one of the horizontal faces, while
for the fourth zone figure it lies at the center of the hexagonal face on the upper right
(or the parallel face opposite it (hidden)). The six tiny pockets of electrons constituting
the fourth zone surface for valence 3 lie at the comers of the regular hexagon given by
displacing that hexagonal face in the [111] direction by half the distance to the face op-
posite it. (After W. Harrison, Phys. Rev. 118, 1190 (1960).) Corresponding constructions
for body-centered cubic metals can be found in the Harrison paper.

THE GEOMETRICAL STRUCTURE FACTOR IN MONATOMIC
LATTICES WITH BASES

Nothing said up to now has exploited any properties of the potential U(r) other
than its periodicity, and, for convenience, inversion symmetry. If we pay somewhat
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closer attention to the form of U, recognizing that it will be made up of a sum of atomic
potentials centered at the positions of the ions, then we can draw some further con-
clusions that are important in studying the electronic structure of monatomic lattices
with a basis, such as the diamond and hexagonal close-packed (hcp) structures.

Suppose that the basis consists of identical ions at positions d;. Then the periodic
potential U(r) will have the form

Ulr) = XR: qu(r - R —dj). (9.31)

If we place this into Eq. (8.32) for Uy, we find that

U = lj dre® Y éir — R —d))
cell R.j

v

v
space

= -1~J. ) dr e %'t Zdﬁlr —dy), (9.32)
or : '

U = %qﬁ(K)Sx*, 9.33)
where ¢(K) is the Fourier transform of the atomic potential,

$(K) = dr e” T (r), (9.34)
all
space

and S, is the geometrical structure factor introduced in our discussion of X-ray
diffraction (Chapter 6):

Sg =Y ex4. (935)
i

Thus when the basis leads to a vanishing structure factor for some Bragg planes,
i.e., when the X-ray diffraction peaks from these planes are missing, then the Fourier
component of the periodic potential associated with such planes vanishes; i.e., the
lowest-order splitting in the free electron levels disappears.

This result is of particular importance in the theory of metals with the hexagonal
close-packed structure, of which there are over 25 (Table 4.4). The first Brillouin
zone for the simple hexagonal lattice is a prism on a regular hexagon base. However,
the structure factor associated with the hexagonal top and bottom of the prism
vanishes (Problem 3, Chapter 6).

Therefore, according to nearly free electron theory, there is o first-order splitting
of the free electron levels at these faces. It might appear that small splittings would
still occur as a result of second-order (and higher-order) effects. However, if the
one-electron Hamiltonian is independent of the spin, then in the hcp structure any
Bloch level with wave vector k on the hexagonal face of the first Brillouin zone
can be proved to be at least twofold degenerate. Accordingly, the splitting is rigorously
zero. In a situation like this it is often more convenient to consider a representation
of the zone structure in which those planes with zero gap are actually ignored. The
regions that one is then led to consider are known as Jones zones or large zones.
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(a) First zone (b) Second zone

{d) Fourth zone

© Third zone

Figure 9.11

Free electron Fermi surface for a divalent hep metal with ideal
¢/a = 1.633. Since the hcp structure is simple hexagonal with two
atoms per primitive cell, there are four electrons per primitive cell
to be accommodated. The resulting Fermi surface comes in many
pieces, whose names reveal an interesting level of imagination and
taste. (a) The cap. The first zone is almost entirely filled by the free
electron sphere, but there are small unoccupied regions in the six
upper and six lower corners. These can be assembled, by transla-
tions through reciprocal lattice vectors, into two of the objects
shown. (b) The monster. Portions of the free electron sphere in the
second zone can be translated back into the first zone to form one
of the large structures shown in the second-zone picture. The mon-
ster encloses unoccupied levels. (¢) Portions of the free electron
sphere in the third zone can be reassembled into several electron-
enclosing surfaces. There is one lens, two cigars, and three buizer-
flies. (d) Those few occupied free electron levels in the fourth zone
can be reassembled into three pockets of the type pictured.

These structures arise when there is significant splitting of the
free electron levels on the hexagonal faces of the first zone as a
result of spin-orbit coupling. When spin-orbit coupling is weak
(as it is in the lighter elements), there is neghgible splitting on these
faces, and the appropriate structures are those shown in Figure 9.12.
(From J. B. Ketterson and R. W. Stark, Phys. Rev. 156, 751 (1967).)
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IMPORTANCE OF SPIN-ORBIT COUPLING AT POINTS OF HIGH
SYMMETRY

Until now we have regarded the electron spin as being completely inert dynamically.
In fact, however, an electron moving through an electric field, such as that of the
periodic potential U(r), experiences a potential proportional to the scalar product of
its spin magnetic moment with the vector product of its velocity and the electric field.
This additional interaction is referred to as the spin-orbit coupling, and is of great
importance in atomic physics (see Chapter 31). Spin-orbit coupling is important in
calculating the almost free electron levels at points in k-space of high symmetry,
since it often happens that levels that are rigorously degenerate when it is ignored
are split by the spin-orbit coupling.

For example, the splitting of the electronic levels on the hexagonal faces of the
first zone in hcp metals is entirely due to spin-orbit coupling. Since the strength of
spin-orbit coupling increases with atomic number, this splitting is appreciable in the
heavy hexagonal metals, but can be small enough to be ignored in the light ones.
Correspondingly, there are two different schemes for constructing free electronlike
Fermi surfaces in hexagonal metals. These are illustrated in Figures 9.11 and 9.12.

Figure 9.12

A representation of the Fermi surface of a divalent hep metal
obtained by reassembling those pieces in Figure 9.11 that were
severed from each other by the horizontal hexagonal faces of the
first Brillouin zone. The first and second zones together make up
the structure on the left, and the many pieces in the third and
fourth zones lead to the structure on the right. This representa-
tion ignores the spin orbit splitting across the hexagonal face.
(After W. Harrison, Phys. Rev. 118, 1190 (1960).)

PROBLEMS

1. Nearly Free Electron Fermi Surface Near a Single Bragg Plane

To investigate the nearly free electron band structure given by (9.26) near a Bragg plane, it is
convenient to measure the wave vector q with respect 10 the point 3K on the Bragg plane. If
we write ¢ = 3K + k, and resolve k into its components parallel (k) and perpendicular (k)
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to K, then (9.26) becomes
: K2 K2 1/2
&= 8%, + ﬂch + (48:.25;?- ky? + [UK]Z) : 9.36)

It is also convenient to measure the Fermi energy &, with respect to the lowest value assumed
by either of the bands given by (9.36) in the Bragg plane, writing:

&p = 52;2 - IUKI + 4, (9:37)

so that when A < 0, no Fermi surface intersects the Bragg plane.
(a) Show that when 0 < A < 2|Uy|, the Fermi surface lies entirely in the lower band and
intersects the Bragg plane in a circle of radius

2mA
p= J - (9.38)

(b) Show that if A > |2Uy], the Fermi surface kes in both bands, cutting the Bragg plane
in two circles of radii p, and p, (Figure 9.6), and that the difference in the areas of the two
circles is

4
w(p,? - py?) = 77 U ©039)

(The area of these circles can be measured directly in some metals through the de Haas-van
Alphen effect (Chapter 14), and therefore |Ug| can be determined directly from experiment for
such nearly [ree electron metals.)

2. Density of Levels for a Two-Band Model
To some extent this problem is artificial in that the eflects of neglected Bragg planes can lead
to corrections comparable to the deviations we shall find here from the free electron result. On
the other hand, the problem is instructive in that the qualitative features are general.

If we resolve q into its components parallel (g;) and perpendicular (g,) to K, then (9.26)

becomes
2

h
&= ﬂqi + hi(qy), (9.40)

where

hz
h () =2m[qﬁ +HK? ~ Zq“K)]

ﬁz 2 1/2

is only a function of g;. The density of levels can be evaluated from (8.57) by performing the
integral in an appropriate primitive cell over wave vectors q in cylindrical coordinates with the
z-axis along K.

(a) Show that when the integral over q is performed, the result for each band is

1 [2 .
9(6) = @(ﬁ) (a7~ 47, ©42)

h?

where, for each band, g}** and g7"" are the solutions to & = h(qy). Verify that the familiar free
electron result is obtained in the limit |Ug| — 0.
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$e(e Figure 9.13

/” Density of levels in the two-band approxima-
tion. The dashed line is the free electron result
Eq. (2.63). Note that in contrast to earlier
figures in this chapter, this one explicitly shows
second-order corrections to the free electron
result far from the Bragg plane.

(b) Show that

, I ,
= - [5r + O, E>0, =K ©9.43)

for the lower band, if the constant energy surface (at energy €) cuts the zone plane (that is,
€%, — U] s e < &%) + |UKD.
(c) Show that for the upper band (9.42) should be interpreted as giving a density of levels

1 /2
g+(8) = a‘i(‘%‘?‘) (g™ — 1K), for & > &y, + |Uu|- 9.44)

(d) Show that dg/dg is singular at & = &, + |U,, so that the density of levels has the form
shown in Figure 9.13. (These singularities are not peculiar cither to the weak potential or two-
band approximations. See page 145.)

3. Effect of Weak Periodic Potential at Places in k-Space Where Bragg Planes Meet
Consider the point W (ky = (2n/a)(1, %, 0)) in the Brillouin zone of the fcc structure shown (see
Figure 9.14). Here three Bragg planes ((200), (111), (11T)) meet, and accordingly the free electron

energies

&=,

g:%@—%muﬂi
g=%@—%mmﬁ,

(0 _ %(k — %" @,0, 0})2 (9.45)

are degenerate when k = ky, and equal to &y, = h’ky?/2m.

< > Figure 9.14

First Brillouin zone for a facecentered cubic crystal
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(a) Show thatina region of k-space near W, the first-order energies are given by solutionsto*®

8g-8 U, U, A

U, 8—-8 U, U, L
U, U, 8 —-8 U,

U, U, Uy g -8

where U, = U,q0, Uy = U, = U,,7. and that at W the roots are
& =28w— U, (twice), &§=8w + U, £+ 2U,. (9.46)
(b) Using a similar method, show that the energies at the point U (ky = (2r/a)(1, 3, £)) are
=& — U, &=8y+ 13U, +4U,2+ 8U,H", (9.47)
where &, = h?ky?/2m.

4. Alternative Definition of Brillouin Zones

Let k be a point in reciprocal space. Suppose spheres of radius k are drawn about every reciprocal
lattice point K except the origin. Show that il k 1s in the interior of n — 1 spheres, and on the
surface of none, then 1t lies in the interior of the nth Brillouin zone. Show that if k is in the
interior of n — 1 spheres and on the surface of m additional spheres, then it is a point common
to the boundaries of the nth, (n + Ith, ..., (n + mjth Brillouin zones.

5. Brillouin Zones in a Two-Dimensional Square Lattice
Consider a two-dimensional square lattice with lattice constant a.

(a) Write down. in units of 27, a. the radius of a circle that can accommodate m free elec-
trons per primitive cell. Construct a table histing which of the first seven zones of the square
lattice (Figure 9.15a) are completely full, which are partially empty, and which are completely
empty for m = 1,2,..., 12 Verify that if m < 12, the occupied levels lie entirely within the
first seven zones, and that when m > 13, levels in the eighth and higher zones become occupied.

(b) Draw pictures in suitable primitive cells of all branches of the Fermi surface for the cases
m=1,2,...,7. The third zone surface for m = 4, for example, can be displayed as in Figure
9.15b.

!5 Assume that the periodic potential U has inversion symmetry so that the Uy are real.



